skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Danhoni, Isabella"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Through model-to-data comparisons from heavy-ion collisions, it has been shown that the quark gluon plasma has an extremely small shear viscosity at vanishing densities. At large baryon densities, significantly less is known about the nature of the shear viscosity from quantum chromodynamics (QCD). Within heavy-ion collisions, there are three conserved charges: baryon number (B), strangeness (S), and electric charge (Q). Here we calculate the shear viscosity in two limits using perturbative QCD (pQCD) and an excluded-volume hadron resonance gas at finite BSQ densities. We then develop a framework that interpolates between these two limits such that shear viscosity is possible to calculate across a wide range of finite BSQ densities. We find that the pQCD and hadron resonance gas calculations have different BSQ density dependencies such that a rather nontrivial shear viscosity appears at finite densities. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026